ALKENES STRUCTURES AND PROPERTIES

5.1 ALKENES

Figure 5.1 Structure of Ethene

(a) The π bond is formed by sideways overlap of the parallel 2p orbitals of adjacent carbon atoms. Carbon forms sigma bonds with sp² hybrid orbitals. (b) Schematic diagram of bonding in ethene. (c) The highest occupied molecular orbital of ethene is the π bond.

5.2 STRUCTURE AND BONDING OF ALKENES Bond Lengths and Bond Energies

Table 5.1 Bonds Lengths and Bond Strengths in Alkanes vs Alkenes

Bond	Bond Length	DH° kJ mole ⁻¹
	(<i>pm</i>)	
$CH_3 - CH_3 (sp^3 - sp^3)$	154	347
$CH_2 = CH_2 (sp^2 - sp^2)$	133	610
CH ₂ =CH—CH ₃	151	121
CH ₃ CH ₂ —H	109	422
CH ₂ =CH—H	107	452

5.2 STRUCTURE AND BONDING OF ALKENES Classification of Alkenes

monosubstituted: disubstituted: trisubstituted: tetrasubstituted:

RCH=CH₂ RCH=CHR or R₂C=CH R₂C=CHR R₂C=CR₂

5.3 UNSATURATION NUMBER

unsaturation number =
$$\frac{[2(3) + 2] - 6}{2} = 1$$

5.4 GEOMETRIC ISOMERISM

Figure 5.2 Rotation About the π Bond

For rotation to occur about a carbon—carbon double bond, the π bond must break. Loss of overlap between parallel 2p orbitals requires about 240 kJ mole⁻¹.

5.4 GEOMETRIC ISOMERISM

Figure 5.3 Geometric Isomers of Alkenes

All six atoms lie in the same plane. In the *cis* isomer two "X" and "Y" groups lie on the same side of the double bond. In the *trans* isomer "X" and "Y" groups lie on opposite sides of the double bond. They do not interconvert because rotation around the π bond does not occur.

all atoms coplanar

trans geometric isomer

no rotation around double bond

cis geometric isomer

5.5 E,Z NOMENCLATURE OF GEOMETRICAL ISOMERS

5.5 E,Z NOMENCLATURE OF GEOMETRICAL ISOMERS Sequence Rules

Sequence Rules-1

1. If two atoms with different atomic numbers *are directly bonded* to a double bond, the atom with the higher atomic number receives a higher priority.

The priority order of some common elements is $Br > Cl > F > O > N > C > {}^{2}H > H$.

Sequence Rule-2

2. If the atoms directly attached to the carbon atom of the double bond have the same atomic number, consider the second, third, and farther atoms until a difference is found. Then apply rule 1.

5.5 E,Z NOMENCLATURE OF GEOMETRICAL ISOMERS Sequence Rules

Sequence Rule-3

3. A multiple bond is considered equivalent to the same number of single bonds to like atoms. Thus, a double bond is counted as two single bonds for both of the atoms in the double bond. The same principle is used for a triple bond.

Common Names of Alkenyl Groups

IUPAC Rules for Naming Alkenes

Rule 1

1. The longest continuous chain of carbon atoms that contains the double bond is the parent alkene.

Rule 2

2. If the atoms directly attached to the carbon atom of the double bond have the same atomic number, the second, third, and farther atoms are considered until a difference is found. Then apply rule 1.

Rule 3

3. Number the carbon atoms in the longest continuous chain starting from the end of the chain nearer the first branch.

Rule 4

Alkyl groups and other substituents are named, and their positions on the chain are 4. identified, according to the numbering established by rule 3. Names and numbers are prefixed to the parent name.

This is 2,3-dimethyl-2-pentene, not 3,4-dimethyl-3-pentene.

Rule 5

5. If the compound can exist as an E or Z isomer, the appropriate prefix followed by a hyphen is placed within parentheses in front of the name.

CH₃

$$GH_2$$

 GH_2
 GH_3 This is (E)-3-methyl-3-hexene.
 GH_3
 GH_2
 H

Rule 6

6. If the compound contains more than one double bond, specify the location of each double bond by a number. A prefix to *-ene* indicates the number of double bonds.

Rule 7

7. Name cycloalkenes by numbering the ring to give the double-bonded carbon atoms the numbers 1 and 2. Choose the direction of numbering so that the first substituent on the ring receives the lower number. The position of the double bond is not given because it is known to be between the C-1 and C-2 atoms.

Rule 8

8. Compounds with a carbon–carbon double bond positioned between a ring carbon atom and a substituent on the ring are named using -ylidene to name the group as a substituent. However, the $(=CH_2)$ group is named methene rather than methylidene.

ethylidinecyclopropane

methylenecyclohexane

5.7 PHYSICAL PROPERTIES OF ALKENES

Density of Alkenes

Table 5.2 Densities of Alkenes

Alkene	Density d ²⁰ (g cm ⁻¹)
1-pentene	2.6 x 10 ⁻⁵
cis-2-pentene	8.5 x 10 ⁻⁵
trans-2-pentene	2.6 x 10 ⁻⁴
2-methyl-2-butene	7.8 x 10 ⁻⁴
3-methyl-1-butene	0.648
1-hexene	0.675
2,3-dimethyl-2-butene	0.705
1-heptene	0.698
1-octene	0.716
1-nonene	0.731
1-decene	0.743

5.7 PHYSICAL PROPERTIES OF ALKENES Polarity of Alkenes

propene (0.3 D)

5.7 PHYSICAL PROPERTIES OF ALKENES Boiling Points of Alkenes

Table 5.3 Boiling Points of Alkenes

Alkene	Boiling Point (°C)
ethene	-103.7
propene	-47.4
1-butene	-6.3
2-methylpropene	-6.9
cis-2-butene	+3.7
trans-2-butene	0.9
1-pentene	30.0
cis-2-pentene	36.9
trans-2-pentene	36.4
1-hexene	63.5
1-heptene	93
1-octene	122.5
1-nonene	146
1-decene	171

 $CH_3CH_2CH_2CH_2 = CH_2$

1-pentene (bp 30 °C)

3-methyl-1-butene (bp 25 °C)

cis-1,2-chloroethene (bp 60 °C)

trans-1,2-chlorodichloroethene (bp 47 °C)

5.8 STABILITY OF ALKENES

1-butene < cis-2-butene < trans-2-butene < 2-methylpropene

——— increasing stability (decreasing ΔH_c^0) ————

Figure 5.4 Heats of Combustion of Isomeric Butenes

The heats of combustion of the isomeric butenes are plotted on the vertical axis in kJ mole⁻¹. All compounds are at higher energy than the common products, carbon dioxide and water.

5.8 STABILITY OF ALKENES

Figure 5.5 Steric Effects and Stability of Alkenes

Some of the hydrogen atoms of the two methyl groups in *cis*-2- butene are within their van der Waals radii. These atoms are in a 1,6 relationship, and they sterically interfere with each other. There is no steric effect in the *trans* isomer.

Steric repulsion between methyl groups.

cis-2-butene

trans-2-butene

5.9 REDUCTION OF ALKENES

5.10 MECHANISM OF CATALYTIC HYDROGENATION

Stereochemistry of Hydrogenation

Stereoselectivity of Hydrogenation

5.10 HEATS OF HYDROGENATION OF ALKENES

Structural Effects on Heats of Hydrogenation

1-butene < *cis*-2-butene < *trans*-2-butene

 $\Delta H^{\circ}_{hydrogenation}$: monosubstituted > disubstituted > trisubstituted > tetrasubstituted

Figure 5.6 Heats of Hydrogenation of Isomeric Butenes

The positions of three isomeric butenes show their relative heats of formation.

Table 5.4 Heats of Hydrogenation of Alkenes

Alkene	$\Delta H^{\circ}_{hydrogenation} kJ mole^{-1}$	Alkene	$\Delta H^{\circ}_{hydrogenation} kJ mole^{-1}$
Unsubstituted		Internal Disubstituted	
ethene	136	cis-2-butene	119
Monosubstituted		trans-2-butene	115
propene	125	cis-2-pentene	117
1-butene	126	trans-2-pentene	114
1-hexene	126	cis-4,5-dimethyl-2-hexene	118
3-methyl-1-butene	127	trans-4,5-dimethyl-2-hexene	113
Terminal disubstituted		Trisubstituted	
2-methylpropene	117	2-methyl-2-pentene	112
2-methyl-1-butene	118	2,3-dimethyl-3-hexene	114
2,3-dimethyl-1-butene	116	Tetrasubstituted	
2,3-dimethyl-1-hexene	117	2,3-dimethyl-2-butene	110
		2,3-dimethyl-2-hexene	106